Gemetric Aspects of Iterated Matrix Multiplication

نویسنده

  • Fulvio Gesmundo
چکیده

This paper studies geometric properties of the Iterated Matrix Multiplication polynomial and the hypersurface that it defines. We focus on geometric aspects that may be relevant for complexity theory such as the symmetry group of the polynomial, the dual variety and the Jacobian loci of the hypersurface, that are computed with the aid of representation theory of quivers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Parallel Matrix Multiplication Method Adapted on Fibonacci Hypercube Structure

The objective of this study was to develop a new optimal parallel algorithm for matrix multiplication which could run on a Fibonacci Hypercube structure. Most of the popular algorithms for parallel matrix multiplication can not run on Fibonacci Hypercube structure, therefore giving a method that can be run on all structures especially Fibonacci Hypercube structure is necessary for parallel matr...

متن کامل

Depth-4 Lower Bounds, Determinantal Complexity: A Unified Approach

Tavenas has recently proved that any nO(1)-variate and degree n polynomial in VP can be computed by a depth-4 ΣΠ[O( p n)]ΣΠ[ p n] circuit of size 2O( p n log n) [Tav13]. So to prove VP 6= VNP, it is sufficient to show that an explicit polynomial ∈ VNP of degree n requires 2ω( p n log n) size depth-4 circuits. Soon after Tavenas’s result, for two different explicit polynomials, depth-4 circuit s...

متن کامل

On Circuit Complexity Classes and Iterated Matrix Multiplication

OF THE DISSERTATION On Circuit Complexity Classes and Iterated Matrix Multiplication by Fengming Wang Dissertation Director: Eric Allender In this thesis, we study small, yet important, circuit complexity classes within NC, such as ACC and TC. We also investigate the power of a closely related problem called Iterated Matrix Multiplication and its implications in low levels of algebraic complexi...

متن کامل

Algebraic adjoint of the polynomials-polynomial matrix multiplication

This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field

متن کامل

L-System Description of Subdivision Curves

In recent years, subdivision has emerged as a major geometric modeling technique. Algorithms for generating subdivision curves are often specified in terms of iterated matrix multiplication. Each multiplication maps a globally indexed sequence of points that represents a coarser approximation of the curve onto a longer sequence that represents a finer approximation. Unfortunately, this use of m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1512.00766  شماره 

صفحات  -

تاریخ انتشار 2015